

Exercise 1: Prove that when,

$$E_1 = E_2 \text{ and } G_{12} = \frac{E_1}{2(1 + \nu_{12})}$$

the material is isotropic.

Hint: Use the first relation in (D.36) and show that the modulus is independent of orientation.

Solution:

Consider the first relation (D.36),

$$\frac{1}{E_x} = \frac{1}{E_1} c^4 + \frac{1}{E_2} s^4 - 2 \frac{\nu_{12}}{E_1} c^2 s^2 + \frac{1}{G_{12}} c^2 s^2$$

Set $E_1 = E_2$ and $G_{12} = \frac{E_1}{2(1 + \nu_{12})}$.

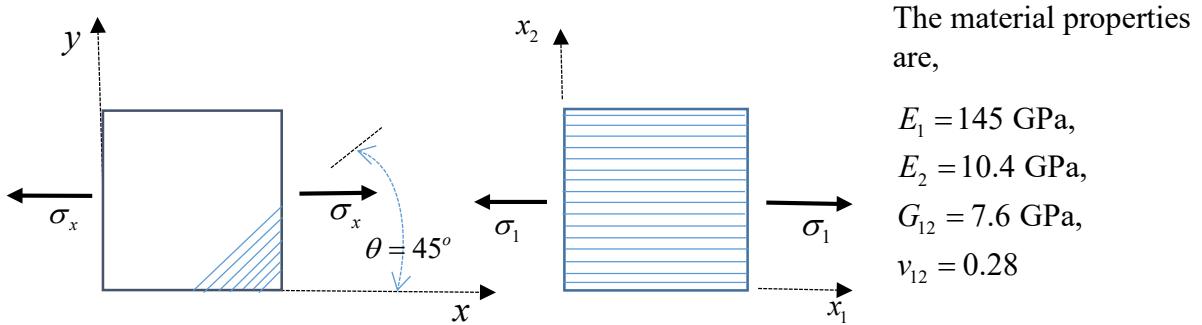
$$\frac{1}{E_x} = \frac{1}{E_1} c^4 + \frac{1}{E_1} s^4 - 2 \frac{\nu_{12}}{E_1} c^2 s^2 + \frac{2(1 + \nu_{12})}{E_1} c^2 s^2$$

$$\frac{1}{E_x} = \frac{1}{E_1} (c^4 + s^4) - 2 \frac{\nu_{12}}{E_1} c^2 s^2 + \frac{2}{E_1} c^2 s^2 + \frac{2\nu_{12}}{E_1} c^2 s^2 = \frac{1}{E_1} (c^4 + s^4 + 2c^2 s^2) = \frac{1}{E_1} (c^2 + s^2)^2$$

With $c = \cos \theta$, $s = \sin \theta$, and $(c^2 + s^2) = 1$, we get $E_x = E_1$.

We can repeat the same steps with E_2 to get $E_x = E_2$ which proves that the material is isotropic.

Exercise 2: Two specimens of an orthotropic material (unidirectional laminate) are subjected to uniaxial traction, as shown in the figure, with $\sigma_x = \sigma_1 = \sigma$. Calculate the resulting lateral strain.



Solution:

For the 45° case (see Figure D7), use (D.33) and (D.24) to obtain the transversal strain,

$$\varepsilon_y = -\frac{v_{xy}}{E_x} \sigma_x = S_{xy} \sigma_x$$

Next take S_{xy} from (D.31) with $c = s = \sqrt{2}/2$ and (D.21b) to relate,

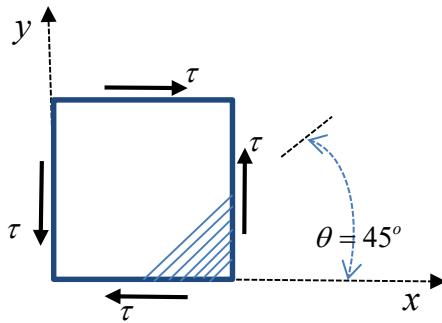
$$\begin{aligned} S_{11} &= \frac{1}{E_1}, S_{22} = \frac{1}{E_2}, S_{12} = -\frac{v_{12}}{E_1}, S_{66} = \frac{1}{G_{12}} \\ \Rightarrow S_{xy} &= (S_{11} + S_{22} - S_{66}) c^2 s^2 + S_{12} (c^4 + s^4) = 8.10 \times 10^{-12} (\text{GPa})^{-1} \\ \Rightarrow \varepsilon_y &= -\frac{v_{xy}}{E_x} \sigma_x = S_{xy} \sigma_x = -8.10 \times 10^{-12} \sigma \end{aligned}$$

For 0° we have from (D.21),

$$\Rightarrow \varepsilon_2 = -\frac{v_{12}}{E_1} \sigma = -1.93 \times 10^{-12} \sigma$$

Thus, the lateral deformation is larger (absolute value) in the 45° case.

Exercise 3: A uniaxial lamina is loaded in pure shear $\sigma_{xy} = \tau$ at 45° with the principal material system axes. Express the resulting strain components in terms of the orthotropic elastic constants $E_1, E_2, G_{12}, \nu_{12}$ (or ν_{21}).



Solution:

We use constitutive relation (D.33), with $\sigma_x = \sigma_y = 0, \sigma_{xy} = \tau$,

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_x} & -\frac{\nu_{yx}}{E_y} & \frac{\eta_{sx}}{G_{xy}} \\ -\frac{\nu_{xy}}{E_x} & \frac{1}{E_y} & \frac{\eta_{sy}}{G_{xy}} \\ \frac{\eta_{xs}}{E_x} & \frac{\eta_{ys}}{E_y} & \frac{1}{G_{xy}} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \tau \end{pmatrix} \quad \text{or} \quad \begin{aligned} \varepsilon_x &= \frac{\eta_{sx}}{G_{xy}} \tau = S_{sx} \tau \quad (S_{sx} = S_{xs}) \\ \varepsilon_y &= \frac{\eta_{sy}}{G_{xy}} \tau = S_{sy} \tau \quad (S_{sy} = S_{ys}) \\ \gamma_{xy} &= \frac{1}{G_{xy}} \tau = S_{ss} \tau \quad (S_{sy} = S_{ys}) \end{aligned}$$

Taking S_{xs}, S_{ys}, S_{ss} from (D.31) at 45° and (D.21b) we obtain,

$$\begin{aligned} \varepsilon_x &= \frac{\eta_{sx}}{G_{xy}} \tau = \frac{\tau}{2} \left(\frac{1}{E_1} - \frac{1}{E_2} \right) \\ \varepsilon_y &= \frac{\eta_{sy}}{G_{xy}} \tau = \frac{\tau}{2} \left(\frac{1}{E_1} - \frac{1}{E_2} \right) \\ \gamma_{xy} &= \frac{1}{G_{xy}} \tau = \tau \left(\frac{1+\nu_{12}}{E_1} + \frac{1+\nu_{21}}{E_2} \right) \end{aligned}$$